Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Campbell, P (Ed.)Abstract The mallard (Anas platyrhynchos) is one of the most common, economically, and socially important birds around the world. Mallards were not only an important food source for early humans but eventually becoming intimately linked with people as they were domesticated over the last 2,000 years. To date, mallard genomes are largely reconstructed from samples of domestic or unknown genetic heritage. Here, we report the first high-quality genome assembly and annotation of a genetically vetted wild mallard from North America (NAwild_v1.0). The genome was assembled using a combination of shotgun libraries, proximity ligation Chicago, and Dovetail Hi-C libraries. The final assembly is ∼1.04 Gb in size, with 98.3% of the sequence located in 30 full or nearly full chromosome-level scaffolds, and with a N50/L50 of 79.1 Mb/4 scaffolds. We used a combination of gene prediction and similarity approaches to annotate a total of 23,584 functional genes, of which 19,242 were associated to GO terms. The genome assembly and the set of annotated genes yielded a 95.4% completeness score when compared with the BUSCO aves_odb10 dataset. Next, we aligned 3 previously published mallard genomes to ours, and demonstrate how runs of homozygosity and nucleotide diversity are substantially higher and lower, respectively, to ours and how these artificially changed genomes resulted in profoundly different and biased demographic histories. Our wild mallard assembly not only provides a valuable resource to shed light onto genome evolution, speciation, and other adaptive processes, but also helping with identifying functional genes that have been significantly altered during the domestication process.more » « less
-
Eyre-Walker, Adam (Ed.)Abstract The invasive Japanese stiltgrass (Microstegium vimineum) affects a wide range of ecosystems and threatens biodiversity across the eastern USA. However, the mechanisms underlying rapid adaptation, plasticity, and epigenetics in the invasive range are largely unknown. We present a chromosome-level assembly for M. vimineum to investigate genome dynamics, evolution, adaptation, and the genomics of phenotypic plasticity. We generated a 1.12-Gb genome with scaffold N50 length of 53.44 Mb respectively, taking a de novo assembly approach that combined PacBio and Dovetail Genomics Omni-C sequencing. The assembly contains 23 pseudochromosomes, representing 99.96% of the genome. BUSCO assessment indicated that 80.3% of Poales gene groups are present in the assembly. The genome is predicted to contain 39,604 protein-coding genes, of which 26,288 are functionally annotated. Furthermore, 66.68% of the genome is repetitive, of which unclassified (35.63%) and long-terminal repeat (LTR) retrotransposons (26.90%) are predominant. Similar to other grasses, Gypsy (41.07%) and Copia (32%) are the most abundant LTR-retrotransposon families. The majority of LTR-retrotransposons are derived from a significant expansion in the past 1–2 Myr, suggesting the presence of relatively young LTR-retrotransposon lineages. We find corroborating evidence from Ks plots for a stiltgrass-specific duplication event, distinct from the more ancient grass-specific duplication event. The assembly and annotation of M. vimineum will serve as an essential genomic resource facilitating studies of the invasion process, the history and consequences of polyploidy in grasses, and provides a crucial tool for natural resource managers.more » « less
An official website of the United States government
